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1. INTRODUCTION

The purpose of this paper is to discuss the fundamental differences between the degenerate
plate element formulations [1–3] and the plate and shell formulations obtained using the
absolute nodal co-ordinate formulation introduced for the large rotation and deformation
analysis of flexible bodies [4–8]. It is demonstrated in this investigation that existing large
rotation degenerate plate formulations, that employ a displacement field that is linear in
the nodal co-ordinates, can only be used in the framework of incremental solution
procedures due to the limitations that arise from the kinematic motion description. Such
limitations do not apply to the absolute nodal co-ordinate formulation, and as a
consequence, this formulation can be used with a non-incremental solution procedure. The
assumptions used in the degenerate plate formulations are explained using Rodriguez
formula for the finite rotation [4]. It is shown in this investigation that, due to these
assumptions, the displacement field in the degenerate plate formulations cannot be defined
in the global inertial frame of reference, unless this displacement field is expressed as a
non-linear function of the nodal co-ordinates. As a consequence, the use of degenerate
plate and shell formulations that provide information about the nodal rotations leads to a
non-linear inertia matrix and non-zero centrifugal and Coriolis inertia forces.
Furthermore, the existing degenerate plate formulations do not ensure the continuity of
all the displacement gradients at the nodal points and they may lead to linearized
kinematic equations for large rotation problems. As demonstrated in this paper, the use of
linearized equations for the finite rotations can lead to a violation of the principle of work
and energy. This is not the case with the finite element absolute nodal co-ordinate
formulation that is based on a displacement field defined in the global co-ordinate system.
This could be achieved by using global displacements and slopes as nodal co-ordinates,
thereby avoiding interpolation of rotations or unit vectors. The absolute nodal co-ordinate
formulation leads to a constant mass matrix, and as a consequence, the centrifugal and
Coriolis inertia forces are identically equal to zero. Unlike the degenerate plate
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formulations, there is no assumption made on the amount of deformation or rotation
within the element. Using this formulation, one can avoid linearization of finite rotations
that leads to incorrect integrals of motion and energy drift that is typical in many finite
element formulations.

2. FINITE ROTATION PROBLEM

In this section, some basic kinematics concepts related to the problem of finite rotations
are reviewed. The material presented in this section will be used in the following sections to
shed light on some of the assumptions used in the degenerate plate formulations.

The transformation matrix Ai that defines the orientation of a co-ordinate system
X iY iZi in another co-ordinate system XYZ as the result of a finite rotation y can be
expressed using Rodriguez formula as follows [4]:

Ai ¼ Iþ *vv sin yþ 2*vv2 sin2 y
2

� �
: ð1Þ

In this equation, I is the identity matrix, *vv is the skew symmetric matrix associated with a
unit vector v along the axis of rotation, and y is the angle of rotation about the axis of
rotation. It is important to point out that the vector v must be defined in the co-ordinate
system XYZ: This is crucial in the discussion that will be presented in the following
section.

In the case of infinitesimal rotations, the preceding equation reduces to

Ai ¼ Iþ *vvy; ð2Þ

where in the preceding equation, the Taylor expansion for sin y is used;

sin y ¼ y� y3

3!
þ � � � : ð3Þ

Let ei
1; e

i
2; and ei

3 be unit vectors along the axes of the co-ordinate system X iY iZi: If two
infinitesimal rotations y1 and y2 are performed about the axes along the unit vectors ei

1 and
ei
2; respectively, the final orientation of the unit vector ei

3 is given by the equation.

ðei
3Þf ¼ Ai

1A
i
2e

i
3: ð4Þ

In this case, Ai
1 and Ai

2 are the transformation matrices that result from the two
infinitesimal rotations y1 and y2; respectively; and in this case of infinitesimal rotations, the
order of rotation is immaterial. Using equation (2) and the definition of the axes of
rotation, it can be shown that the preceding equation leads to

ðei
3Þf ¼ ei

3 þ y1ðei
1 � ei

3Þ þ y2ðei
2 � ei

3Þ: ð5Þ

This equation can also be written as

ðei
3Þf ¼ ei

3 þ y2e
i
1 � y1e

i
2: ð6Þ

The last two terms on the right-hand side of this equation represent the change in the
vector ei

3 as the result of the two infinitesimal rotations y1 and y2: It is important to note
that the vectors ei

1 and ei
2 must be, according to Rodriguez formula, defined in the co-

ordinate system XYZ: This fact is crucial in understanding the basic assumptions
underlying the degenerate plate formulations.
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3. DEGENERATE PLATE FORMULATIONS

There are several degenerate plate and shell element formulations in the finite element
literature [1–3]. In most of the degenerate plate formulations, the displacement field is
described as the sum of two vectors. The first vector is an isoparametric representation
that can be conveniently used to describe curved structures such as shells. The nodal co-
ordinates used in this vector are three translation nodal displacements. In the second
vector, two unit vectors that are tangent to the plate mid-surface are introduced and two
rotations are used as nodal co-ordinates for each node. This second part defines the
contribution of the displacement field due to the change in the orientation of the normal to
the plate mid-surface. Such a two-part plate element displacement field allows for
conveniently representing configurations of shell structures and at the same time it
provides information about some rotations at the nodes. In this section, we consider the
following displacement field as an example of degenerate plate formulations [1–3]:

u ¼
Xnn

k¼1

Nkuk þ
Xnn

k¼1

NkB
tk

2
Vkak: ð7Þ

In this equation, u is the displacement vector of an arbitrary point on the plate element, Nk

is the element shape function matrices associated with the co-ordinates of node k; uk is the
three-dimensional vector of translation nodal displacements, B is the natural co-ordinate,
tk is the plate thickness at node k; Vk ¼ ½ekx eky	T; ekx and eky are unit vectors tangent to
the mid-surface of the plate at node k; ak ¼ ½akx aky	T; akx and aky are the two rotations at
node k; and nn is the number of nodes of the element. For the following discussion, it is
more convenient to write the preceding equation in the form

u ¼ ua þ ub; ð8Þ

where

ua ¼
Xnn

k¼1

Nkuk; ub ¼
Xnn

k¼1

NkB
tk

2
Vkak: ð9Þ

It is important to note that the vector ua; by selecting a proper number of nodes, is
sufficient to describe an arbitrary displacement of the plate including deformations and
rigid body motion. However, this part of the displacement field does not provide
information about the rotations or slopes, and as a consequence, continuity of some of
these kinematics variables is not ensured at the element nodal points. Since rotations are
crucial in the classical formulations of plate and shell structures, the second vector ub is
introduced for the purpose of achieving continuity of some rotation parameters.

3.1. CONSISTENCY

The vector ub is systematically derived using Rodriguez formula of the infinitesimal
rotation as described in the preceding section. Modification of this vector in order to use
higher order terms in the rotations must be made according to Rodriguez formula,
otherwise inconsistent formulation is obtained. Nonetheless, introducing the vector ub of
the displacement field can lead to difficulties if the vector of displacement u is not defined
in the proper co-ordinate system. This fact, which is explained below, is crucial in
understanding the fundamental differences between the degenerate plate formulations and
the finite element absolute nodal co-ordinate formulation briefly reviewed in the following
section.
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If the vector u is selected to define the location, not the displacement, of an arbitrary
point on the plate element, the tangent vectors at an arbitrary point on the plate mid-
surface are defined as

tx ¼ @u

@x
; ty ¼ @u

@y
: ð10Þ

In this equation, x and y are the local spatial co-ordinates of the element. For a general
plate or shell configuration, these two vectors are not necessarily orthogonal. They are
orthogonal for flat plates that undergo rigid-body displacements. The cross product of
these two vectors defines the normal to the plate mid-surface. In general, the tangent and
normal vectors can be normalized and then used with simple cross product operations to
define the two orthogonal unit tangent vectors ekx and eky that are used in the
displacement field [1]. In view of the discussion presented in the preceding section, the
vectors ekx and eky must be defined in the co-ordinate system in which the element
configuration is to be defined. Therefore, if the global system is used and accurate
expressions are used for the two vectors, ekx and eky; these two vectors become highly non-
linear functions of the nodal co-ordinates. As a consequence, the assumed displacement
field u becomes a highly non-linear function of the nodal co-ordinates. That is to say, in
principle, the degenerate plate formulation presented in this section, if implemented
correctly, cannot lead to an expression for the locations of the points on the elements in
the global system that is linear in the nodal co-ordinates. For this reason, most finite
element implementations of the degenerate plate formulations are incremental and require
the use of a co-rotational procedure. An updating scheme is used to define the vectors ekx

and eky as explained by Bathe [1].

3.2. SUMMARY AND REMARKS

Based on the discussion presented in this section, some conclusions that are important
to demonstrate the basic differences between the degenerate plate formulations and the
absolute nodal co-ordinate formulation are summarized as follows:

1. In the case of large rotation problems, the displacement field of the degenerate plate
formulations that is linear in the nodal co-ordinates cannot be used to define the global
locations of arbitrary points on the finite element in an inertial frame of reference. This
is due to the fact that the unit tangents depend on the plate configuration.

2. As a consequence of equation (1), degenerate plate formulations are often implemented
using incremental solution procedures that require elaborate updating schemes and the
use of local element co-ordinate systems.

3. In large rotation dynamic problems, existing degenerate plate formulations do not lead
to a constant mass matrix for the finite element due to the nature of the co-ordinates
and solution procedure used. As a result, the centrifugal and Coriolis inertia forces are
not equal to zero and are highly non-linear functions of the nodal co-ordinates and
velocities.

4. Degenerate plate formulations ensure continuity of some rotations. However, a
rotation is defined by an angle and an axis of rotation. This fact sheds light on the
approximations made in some existing finite element formulations when the unit
vectors ekx and eky are determined.

5. Degenerate plate formulations do not ensure the continuity of all the displacement
gradients. They ensure continuity of some rotations at the nodal points, provided that
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the unit tangents are correctly determined. Furthermore, representation of the drilling
degree of freedom adds more complexity to the degenerate plate formulations.

4. ABSOLUTE NODAL CO-ORDINATE FORMULATION

The absolute nodal co-ordinate formulation was introduced for the large deformation
analysis of flexible bodies in multibody system applications that are characterized by large
rigid-body rotations. The motion of the bodies exhibits a strong coupling between the
reference displacement and the body deformations. While most solution procedures used
in general purpose finite element codes are based on incremental methods, most multibody
dynamics solution procedures are non-incremental. This is due to the fact that multibody
simulations are carried out for a long period of time, and the use of the incremental
solution procedures can lead to significant error accumulation. In order to have non-
incremental large deformation procedure that can be easily implemented in multibody
solution algorithms, one must use a fully non-linear formulation in which no linearization
is made with regard to the large rotations. The absolute nodal co-ordinate formulation has
been found to be an effective method that satisfies this requirement, and does not require
special measures in the numerical integration in order to satisfy the principle of work and
energy. In this section, we briefly review the basic kinematics equations in order to
demonstrate the fundamental differences between the absolute nodal co-ordinate
formulation and the degenerate plate formulations.

Unlike the degenerate plate formulations, in the absolute nodal co-ordinate formula-
tion, the displacement field is used to define the location of the arbitrary point on the finite
element in the global co-ordinate system. In this formulation, the global position vector of
an arbitrary point on the element can be written as [4–8]

r ¼ Sðx; y; zÞe: ð11Þ

In this equation, S is the element shape function matrix, x; y; and z are the local spatial co-
ordinates of the element, and e is the vector of nodal co-ordinates. The shape function
matrix S and the vector of nodal co-ordinates e must be selected such that the element can
describe an arbitrary rigid-body displacement and large deformation. Examples of two-
and three-dimensional finite elements developed using the general description of equation
(11) can be found in the literature [4–8].

4.1. PLATE ELEMENT

Unlike the degenerate plate formulations and large rotation vector formulations [9], the
vector of nodal co-ordinates e in equation (11) does not include any finite or infinitesimal
rotations. It consists of global displacements and slope nodal co-ordinates; each node in
the four-node plate elements proposed in reference [8] has 12 degrees of freedom that
include three translation co-ordinates and nine position vector gradients. These proposed
plate elements that can describe an arbitrary large rotation and deformation have 48 nodal
co-ordinates. The 12 nodal co-ordinates for node k are defined as

ek ¼ rTk
@rTk
@x

@rTk
@y

@rTk
@z

� �T

¼ rTk rTks

� �T
: ð12Þ

In this equation, rk is the three-dimensional vector of nodal translations, and rks is the
nine-dimensional vector of the position vector gradients at node k: Therefore, equation
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(11) can be written as

r ¼
X4

k¼1

Sktrk þ
X4

k¼1

Skrrks: ð13Þ

In this equation, Skt and Skr are shape function matrices [8]. Note that the assumed
displacement field of equation (13), unlike the degenerate plate element formulation, is
linear in the nodal co-ordinates regardless of the amount of rotation or deformation
within the element. No unit vectors or rotations are used in this equation, and no
interpolation of rotations or slopes is required, yet all information about the tangents and
normal to the plate mid-surface can be easily obtained from the preceding equation. This
assumed displacement field defines the location of the arbitrary points on the plate or shell
element in an inertial global system and not in an element co-ordinate system. Details of
plate and shell element shape functions based on the absolute nodal co-ordinate
formulation as well as highly non-linear large deformation and large rotation problems
solved using equation (13) are presented in the literature [8].

4.2. FUNDAMENTAL DIFFERENCES

The kinematics description of equation (13) is fundamentally different from the
description used in the degenerate plate formulation presented in the preceding section for
the following reasons:

1. In the case of large rotation problems, the displacement field of the plate element based
on the absolute nodal co-ordinate formulation is linear in the nodal co-ordinates. This
displacement field can be used, unlike the degenerate plate formulation, to define the
global locations of arbitrary points on the finite element in an inertial frame of
reference.

2. As a consequence of equation (1) and since no linearization is made, the absolute nodal
co-ordinate formulation can be implemented using non-incremental solution proce-
dures that do not require elaborate updating schemes nor the definition or interpolation
of unit vectors or finite rotations.

3. In large rotation dynamic problems, the absolute nodal co-ordinate formulation leads
to a constant mass matrix for the finite element due to the nature of the co-ordinates
used. As a result, the centrifugal and Coriolis inertia forces are identically equal to zero.

4. Because the position vector gradients are used as nodal co-ordinates, the absolute nodal
co-ordinate formulation provides information about all the rotations at the nodal
point. To the authors’ knowledge, this is the only known finite element dynamic
formulation that provides this information and at the same time leads to a constant
mass matrix.

5. The absolute nodal co-ordinate formulation ensures the continuity of all rotations and
displacement gradients and can be applied to beam, plate and shell problems as
demonstrated in several publications [5–8].

5. CONSERVATION OF ENERGY

The dynamic equations of motion lead to constants or integrals of motion. Formulated
correctly, the dynamic equations lead to an integral of motion that defines the principle of
work and energy. Solved accurately, the equations of motion should lead to a solution that
satisfies the principle of work and energy. Solutions obtained using most multibody
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formulations satisfy the principle of work and energy since these formulations employ
fully non-linear equations. The absolute nodal co-ordinate formulation also leads to a
non-linear formulation that ensures slope continuity and leads to exact modelling of the
rigid-body dynamics. This is crucial in multibody applications that are inherently non-
linear due to the large reference displacements and the constraints that restrict the motion
of the system components. Linearization and slope discontinuity in addition to using
incremental solution procedures, if not properly handled, can lead to serious problems
when multibody system applications are considered.

5.1. SIMPLE EXAMPLE

In order to further elaborate on some of the difficulties that can be encountered when
the equations of motion of a simple system are linearized, we consider the simple
pendulum example shown in Figure 1. The non-linear equation of motion of this single-
degree-of-freedom rigid-body system is given by

IO
.yyþ mg

l

2
sin y ¼ 0; ð14Þ

where y is the angle of rotation of the pendulum, IO is the mass moment of inertia of the
pendulum about the fixed point O; m and l are respectively the pendulum mass and length,
and g is the gravity constant. Recall that .yy ¼ ’yy ðd’yy=dyÞ and, substituting into the
preceding equation, one obtains the following constant energy integral of motion for this
conservative system:

1
2

IO
’yy
2� mg

l

2
cos y ¼ C1; ð15Þ

where C1 is a constant. This equation, that states that the change in the system kinetic
energy is equal to the change in the system potential energy, shows that the kinetic energy
has an upper limit. Therefore, an accurate numerical solution of the non-linear
relationship of equation (14) must satisfy the principle of work and energy as defined
for the pendulum system by equation (15). Most multibody algorithms do satisfy the
principle of work and energy since the equations of motion are not linearized, and as a
consequence, there is no need for using incremental solution procedures.

On the other hand, a linearization of equation (14) produces the equation.

IO
.yyþ mg

l

2
y ¼ 0: ð16Þ
O
m, l, Io

�

Figure 1. Simple pendulum.
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Using again the fact that .yy ¼ ’yyðd’yy=dyÞ into the preceding equation and integrating leads
to the following constant of motion:

1
2
IO

’yy
2 þ mg

l

4
y2 ¼ C2; ð17Þ

where C2 is a constant. The solution of equation (16) satisfies equation (17), but it does not
satisfy the energy constant of equation (15). Equation 17 is an approximation for the pri-
nciple of work and energy only when the reference rotation as defined in the global system
is small. If the reference rotation is finite, the integral of motion of equation (16) is no
longer an accurate representation of the principle of work and energy. As the result, any
solution procedure, incremental or non-incremental, of equation (16) can lead to energy

drift as the angle y increases since such a solution is not required to satisfy equation (15).

6. SUMMARY AND CONCLUSIONS

In this paper, the basic differences between the degenerate plate formulations and the
plate formulations obtained using the absolute nodal co-ordinate formulation are
discussed. It was demonstrated that the kinematics description of the degenerate plate
formulations, that is linear in the nodal co-ordinates, cannot be used to define the global
locations of arbitrary points in an inertial co-ordinate system. Such a kinematics
description has to be a non-linear function of the nodal co-ordinates in order to achieve
this global definition in the degenerate plate formulations [10]. As a result, degenerate
plate formulations lead to non-linear mass matrix. The absolute nodal co-ordinate
formulation, on the other hand, can be used to define the global configurations of the finite
elements by using a displacement field that is linear in the nodal co-ordinates. This can be
achieved by using global displacement and slope co-ordinates. This displacement
description leads to a constant mass matrix, and as a consequence, the centrifugal and
Coriolis inertia forces are identically equal to zero. Since the absolute nodal co-ordinate
formulation does not lead to any linearization, this formulation does not require the use of
special measures in the numerical integrator to satisfy the principle of work and energy.

The simple pendulum example, discussed in this paper, demonstrates that violation of
the principle of work and energy can be an indication that the differential equations of
motion are not correctly defined. System of dynamic equations satisfies certain integrals. If
the dynamic equations are correctly defined, the numerical solution of these equations
must satisfy the principle of work and energy. An energy violation can be a clear
indication of a problem associated with the description of the large reference rotation. The
simple pendulum example also explains the reason for introducing, in many non-linear
multibody formulations, the concept of the floating frame of reference that leads to
accurate modelling of the reference rotations [4, 11]. The floating frame of reference
formulation does not lead to an energy drift since the reference rotations are not linearized
while the small elastic deformations are defined in the body co-ordinate system.

ACKNOWLEDGEMENTS

This research was supported, in part, by the National Science Foundation.

REFERENCES

1. K. J. Bathe 1996 Finite Element Procedures. Engelwood Cliffs, NJ: Prentice-Hall.
2. R. D. Cook, D. S. Malkus and M. E. Plesha 1989 Concepts and Applications of Finite Element

Analysis. New York: John Wiley & Sons; third edition.



LETTERS TO THE EDITOR 489
3. S. Ahmad, B. M. Irons and O. C. Zienkiewicz 1970 International Journal for Numerical
Methods in Engineering 2, 419–451. Analysis of thick and thin shell structures by curved finite
elements.

4. A. A. Shabana 1998 Dynamics of Multibody Systems. Cambridge: Cambridge University Press;
Second Edition.

5. M. A. Omar and A. A. Shabana 2001 Journal of Sound and Vibration 243, 565–576. A two-
dimensional shear deformable beam for large rotation and deformation problems.

6. A. A. Shabana and R. Y. Yakoub 2001 American Society of Mechanical Engineers Journal of
Mechanical Design 123, 606–613. Three dimensional absolute nodal coordinate formulation for
beam elements: theory.

7. R. Y. Yakoub and A. A. Shabana 2001 American Society of Mechanical Engineers Journal of
Mechanical Design 123, 614–621. Three dimensional absolute nodal coordinate formulation for
beam elements: implementation and applications.

8. A. M. Mikkola and A. A. Shabana 2001 Proceedings of the 2001 ASME International Design
Engineering Technical Conferences, September 9–12, Pittsburgh, PA. A new plate element based
on the absolute nodal coordinate formulation.

9. J. C. Simo and L. Vu-Quoc 1986. American Society of Mechanical Engineers Journal of Applied
Mechanics 53, 849–863. On the dynamics of flexible beams under large overall motion. Parts I
&II.

10. N. Buechter and E. Ramm 1992 International Journal for Numerical Methods in Engineering 34,
39–59. Shell Theory Versus Degeneration-A Comparison in Large Rotation Finite Element
Analysis.

11. A. A. Shabana 1996 American Society of Mechanical Engineers Journal of Mechanical Design
118, 171–178. Finite element incremental approach and exact rigid body inertia.


	1. INTRODUCTION
	2. FINITE ROTATION PROBLEM
	3. DEGENERATE PLATE FORMULATIONS
	4. ABSOLUTE NODAL CO-ORDINATE FORMULATION
	5. CONSERVATION OF ENERGY
	Figure 1

	6. SUMMARY AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

